Ekaterina Kulikova |
18.05.2023 13:14 |
ZkSynk | Деплой смарт контракта #3
ZkSynk Account abstraction multisig Smart Contract | Деплой смарт контракта ЗкСинк
Требования к серверу:
Также нам понадобится:
- кошелек метамаск с ETH Goerli
- Тестовая сеть zksynk era testnet (можно подключить тут)
- Тестовые токенамы ETH в сети zksynk (кран тут)
- Приватный ключ от метамаска (не используйте кошельки с ральными деньгами!)
- RPC ETH1 goerli (можно взять на инфуре)
Подготавливаем сервер:
Код:
sudo apt-get update -y && sudo apt upgrade -y && sudo apt-get install make build-essential unzip lz4 gcc git jq chrony -y
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.1/install.sh | bash
source ~/.bashrc
nvm -v
nvm install v16.16.0
node -v
#вывод - v16.16.0
Код:
mkdir custom-aa-tutorial
cd custom-aa-tutorial
Код:
yarn init -y
yarn add -D typescript ts-node ethers@^5.7.2 @ethersproject/hash @ethersproject/web zksync-web3 hardhat @matterlabs/hardhat-zksync-solc @matterlabs/hardhat-zksync-deploy
mkdir contracts deploy
Код:
nano hardhat.config.ts
#вставляем:
import { HardhatUserConfig } from "hardhat/config";
import "@matterlabs/hardhat-zksync-deploy";
import "@matterlabs/hardhat-zksync-solc";
const config: HardhatUserConfig = {
zksolc: {
version: "1.3.10", // Use latest available in https://github.com/matter-labs/zksolc-bin/
compilerSource: "binary",
settings: {
isSystem: true,
},
},
defaultNetwork: "zkSyncTestnet",
networks: {
zkSyncTestnet: {
url: "https://testnet.era.zksync.dev",
ethNetwork: "<GOERLI NODE RPC>", // Can also be the RPC URL of the network (e.g. `https://goerli.infura.io/v3/<API_KEY>`)
zksync: true,
},
},
solidity: {
version: "0.8.16",
},
};
export default config;
Заменить <GOERLI NODE RPC> на рпс с инфуры, к примеру
Cохраняем и выходим из нано
Код:
yarn add -D @matterlabs/zksync-contracts @openzeppelin/contracts
cd contracts
nano TwoUserMultisig.sol
#вставляем:
Код:
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.16;
import "@matterlabs/zksync-contracts/l2/system-contracts/interfaces/IAccount.sol";
import "@matterlabs/zksync-contracts/l2/system-contracts/libraries/TransactionHelper.sol";
import "@openzeppelin/contracts/interfaces/IERC1271.sol";
// Used for signature validation
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
// Access zkSync system contracts for nonce validation via NONCE_HOLDER_SYSTEM_CONTRACT
import "@matterlabs/zksync-contracts/l2/system-contracts/Constants.sol";
// to call non-view function of system contracts
import "@matterlabs/zksync-contracts/l2/system-contracts/libraries/SystemContractsCaller.sol";
contract TwoUserMultisig is IAccount, IERC1271 {
// to get transaction hash
using TransactionHelper for Transaction;
// state variables for account owners
address public owner1;
address public owner2;
bytes4 constant EIP1271_SUCCESS_RETURN_VALUE = 0x1626ba7e;
modifier onlyBootloader() {
require(
msg.sender == BOOTLOADER_FORMAL_ADDRESS,
"Only bootloader can call this function"
);
// Continue execution if called from the bootloader.
_;
}
constructor(address _owner1, address _owner2) {
owner1 = _owner1;
owner2 = _owner2;
}
function validateTransaction(
bytes32,
bytes32 _suggestedSignedHash,
Transaction calldata _transaction
) external payable override onlyBootloader returns (bytes4 magic) {
return _validateTransaction(_suggestedSignedHash, _transaction);
}
function _validateTransaction(
bytes32 _suggestedSignedHash,
Transaction calldata _transaction
) internal returns (bytes4 magic) {
// Incrementing the nonce of the account.
// Note, that reserved[0] by convention is currently equal to the nonce passed in the transaction
SystemContractsCaller.systemCallWithPropagatedRevert(
uint32(gasleft()),
address(NONCE_HOLDER_SYSTEM_CONTRACT),
0,
abi.encodeCall(INonceHolder.incrementMinNonceIfEquals, (_transaction.nonce))
);
bytes32 txHash;
// While the suggested signed hash is usually provided, it is generally
// not recommended to rely on it to be present, since in the future
// there may be tx types with no suggested signed hash.
if (_suggestedSignedHash == bytes32(0)) {
txHash = _transaction.encodeHash();
} else {
txHash = _suggestedSignedHash;
}
// The fact there is are enough balance for the account
// should be checked explicitly to prevent user paying for fee for a
// transaction that wouldn't be included on Ethereum.
uint256 totalRequiredBalance = _transaction.totalRequiredBalance();
require(totalRequiredBalance <= address(this).balance, "Not enough balance for fee + value");
if (isValidSignature(txHash, _transaction.signature) == EIP1271_SUCCESS_RETURN_VALUE) {
magic = ACCOUNT_VALIDATION_SUCCESS_MAGIC;
} else {
magic = bytes4(0);
}
}
function executeTransaction(
bytes32,
bytes32,
Transaction calldata _transaction
) external payable override onlyBootloader {
_executeTransaction(_transaction);
}
function _executeTransaction(Transaction calldata _transaction) internal {
address to = address(uint160(_transaction.to));
uint128 value = Utils.safeCastToU128(_transaction.value);
bytes memory data = _transaction.data;
if (to == address(DEPLOYER_SYSTEM_CONTRACT)) {
uint32 gas = Utils.safeCastToU32(gasleft());
// Note, that the deployer contract can only be called
// with a "systemCall" flag.
SystemContractsCaller.systemCallWithPropagatedRevert(gas, to, value, data);
} else {
bool success;
assembly {
success := call(gas(), to, value, add(data, 0x20), mload(data), 0, 0)
}
require(success);
}
}
function executeTransactionFromOutside(Transaction calldata _transaction)
external
payable
{
_validateTransaction(bytes32(0), _transaction);
_executeTransaction(_transaction);
}
function isValidSignature(bytes32 _hash, bytes memory _signature)
public
view
override
returns (bytes4 magic)
{
magic = EIP1271_SUCCESS_RETURN_VALUE;
if (_signature.length != 130) {
// Signature is invalid anyway, but we need to proceed with the signature verification as usual
// in order for the fee estimation to work correctly
_signature = new bytes(130);
// Making sure that the signatures look like a valid ECDSA signature and are not rejected rightaway
// while skipping the main verification process.
_signature[64] = bytes1(uint8(27));
_signature[129] = bytes1(uint8(27));
}
(bytes memory signature1, bytes memory signature2) = extractECDSASignature(_signature);
if(!checkValidECDSASignatureFormat(signature1) || !checkValidECDSASignatureFormat(signature2)) {
magic = bytes4(0);
}
address recoveredAddr1 = ECDSA.recover(_hash, signature1);
address recoveredAddr2 = ECDSA.recover(_hash, signature2);
// Note, that we should abstain from using the require here in order to allow for fee estimation to work
if(recoveredAddr1 != owner1 || recoveredAddr2 != owner2) {
magic = bytes4(0);
}
}
// This function verifies that the ECDSA signature is both in correct format and non-malleable
function checkValidECDSASignatureFormat(bytes memory _signature) internal pure returns (bool) {
if(_signature.length != 65) {
return false;
}
uint8 v;
bytes32 r;
bytes32 s;
// Signature loading code
// we jump 32 (0x20) as the first slot of bytes contains the length
// we jump 65 (0x41) per signature
// for v we load 32 bytes ending with v (the first 31 come from s) then apply a mask
assembly {
r := mload(add(_signature, 0x20))
s := mload(add(_signature, 0x40))
v := and(mload(add(_signature, 0x41)), 0xff)
}
if(v != 27 && v != 28) {
return false;
}
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if(uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return false;
}
return true;
}
function extractECDSASignature(bytes memory _fullSignature) internal pure returns (bytes memory signature1, bytes memory signature2) {
require(_fullSignature.length == 130, "Invalid length");
signature1 = new bytes(65);
signature2 = new bytes(65);
// Copying the first signature. Note, that we need an offset of 0x20
// since it is where the length of the `_fullSignature` is stored
assembly {
let r := mload(add(_fullSignature, 0x20))
let s := mload(add(_fullSignature, 0x40))
let v := and(mload(add(_fullSignature, 0x41)), 0xff)
mstore(add(signature1, 0x20), r)
mstore(add(signature1, 0x40), s)
mstore8(add(signature1, 0x60), v)
}
// Copying the second signature.
assembly {
let r := mload(add(_fullSignature, 0x61))
let s := mload(add(_fullSignature, 0x81))
let v := and(mload(add(_fullSignature, 0x82)), 0xff)
mstore(add(signature2, 0x20), r)
mstore(add(signature2, 0x40), s)
mstore8(add(signature2, 0x60), v)
}
}
function payForTransaction(
bytes32,
bytes32,
Transaction calldata _transaction
) external payable override onlyBootloader {
bool success = _transaction.payToTheBootloader();
require(success, "Failed to pay the fee to the operator");
}
function prepareForPaymaster(
bytes32, // _txHash
bytes32, // _suggestedSignedHash
Transaction calldata _transaction
) external payable override onlyBootloader {
_transaction.processPaymasterInput();
}
fallback() external {
// fallback of default account shouldn't be called by bootloader under no circumstances
assert(msg.sender != BOOTLOADER_FORMAL_ADDRESS);
// If the contract is called directly, behave like an EOA
}
receive() external payable {
// If the contract is called directly, behave like an EOA.
// Note, that is okay if the bootloader sends funds with no calldata as it may be used for refunds/operator payments
}
}
Код:
nano AAFactory.sol
#вставляем:
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.16;
import "@matterlabs/zksync-contracts/l2/system-contracts/Constants.sol";
import "@matterlabs/zksync-contracts/l2/system-contracts/libraries/SystemContractsCaller.sol";
contract AAFactory {
bytes32 public aaBytecodeHash;
constructor(bytes32 _aaBytecodeHash) {
aaBytecodeHash = _aaBytecodeHash;
}
function deployAccount(
bytes32 salt,
address owner1,
address owner2
) external returns (address accountAddress) {
(bool success, bytes memory returnData) = SystemContractsCaller
.systemCallWithReturndata(
uint32(gasleft()),
address(DEPLOYER_SYSTEM_CONTRACT),
uint128(0),
abi.encodeCall(
DEPLOYER_SYSTEM_CONTRACT.create2Account,
(salt, aaBytecodeHash, abi.encode(owner1, owner2), IContractDeployer.AccountAbstractionVersion.Version1)
)
);
require(success, "Deployment failed");
(accountAddress) = abi.decode(returnData, (address));
}
}
Код:
cd ..
cd deploy
nano deploy-factory.ts
#вставляем:
import { utils, Wallet } from 'zksync-web3';
import * as ethers from 'ethers';
import { HardhatRuntimeEnvironment } from 'hardhat/types';
import { Deployer } from '@matterlabs/hardhat-zksync-deploy';
export default async function (hre: HardhatRuntimeEnvironment) {
// Private key of the account used to deploy
const wallet = new Wallet('<WALLET_PRIVATE_KEY>');
const deployer = new Deployer(hre, wallet);
const factoryArtifact = await deployer.loadArtifact('AAFactory');
const aaArtifact = await deployer.loadArtifact('TwoUserMultisig');
// Getting the bytecodeHash of the account
const bytecodeHash = utils.hashBytecode(aaArtifact.bytecode);
const factory = await deployer.deploy(
factoryArtifact,
[bytecodeHash],
undefined,
[
// Since the factory requires the code of the multisig to be available,
// we should pass it here as well.
aaArtifact.bytecode,
]
);
console.log(`AA factory address: ${factory.address}`);
}
Заменить <WALLET_PRIVATE_KEY> на приватный ключ от кошелька
Сохраняем и выходим из нано
Код:
cd ..
#вы должны оказаться в папке сustom-aa-tutorial
yarn hardhat compile
yarn hardhat deploy-zksync --script deploy-factory.ts
#газа ушло около 0.2 ETH
#правильный вывод: AA factory address: 0xD554...
Сохраните себе этот вывод! Это адрес фактори контракта
Работа с аккаунтами
Код:
cd deploy
nano deploy-multisig.ts
#вставляем:
Код:
import { utils, Wallet, Provider, EIP712Signer, types } from "zksync-web3";
import * as ethers from "ethers";
import { HardhatRuntimeEnvironment } from "hardhat/types";
// Put the address of your AA factory
const AA_FACTORY_ADDRESS = "<FACTORY-ADDRESS>";
export default async function (hre: HardhatRuntimeEnvironment) {
const provider = new Provider("https://testnet.era.zksync.dev");
// Private key of the account used to deploy
const wallet = new Wallet("<WALLET-PRIVATE-KEY>").connect(provider);
const factoryArtifact = await hre.artifacts.readArtifact("AAFactory");
const aaFactory = new ethers.Contract(
AA_FACTORY_ADDRESS,
factoryArtifact.abi,
wallet
);
// The two owners of the multisig
const owner1 = Wallet.createRandom();
const owner2 = Wallet.createRandom();
// For the simplicity of the tutorial, we will use zero hash as salt
const salt = ethers.constants.HashZero;
// deploy account owned by owner1 & owner2
const tx = await aaFactory.deployAccount(
salt,
owner1.address,
owner2.address
);
await tx.wait();
// Getting the address of the deployed contract account
const abiCoder = new ethers.utils.AbiCoder();
const multisigAddress = utils.create2Address(
AA_FACTORY_ADDRESS,
await aaFactory.aaBytecodeHash(),
salt,
abiCoder.encode(["address", "address"], [owner1.address, owner2.address])
);
console.log(`Multisig account deployed on address ${multisigAddress}`);
console.log("Sending funds to multisig account");
// Send funds to the multisig account we just deployed
await (
await wallet.sendTransaction({
to: multisigAddress,
// You can increase the amount of ETH sent to the multisig
value: ethers.utils.parseEther("0.008"),
})
).wait();
let multisigBalance = await provider.getBalance(multisigAddress);
console.log(`Multisig account balance is ${multisigBalance.toString()}`);
// Transaction to deploy a new account using the multisig we just deployed
let aaTx = await aaFactory.populateTransaction.deployAccount(
salt,
// These are accounts that will own the newly deployed account
Wallet.createRandom().address,
Wallet.createRandom().address
);
const gasLimit = await provider.estimateGas(aaTx);
const gasPrice = await provider.getGasPrice();
aaTx = {
...aaTx,
// deploy a new account using the multisig
from: multisigAddress,
gasLimit: gasLimit,
gasPrice: gasPrice,
chainId: (await provider.getNetwork()).chainId,
nonce: await provider.getTransactionCount(multisigAddress),
type: 113,
customData: {
gasPerPubdata: utils.DEFAULT_GAS_PER_PUBDATA_LIMIT,
} as types.Eip712Meta,
value: ethers.BigNumber.from(0),
};
const signedTxHash = EIP712Signer.getSignedDigest(aaTx);
const signature = ethers.utils.concat([
// Note, that `signMessage` wouldn't work here, since we don't want
// the signed hash to be prefixed with `\x19Ethereum Signed Message:\n`
ethers.utils.joinSignature(owner1._signingKey().signDigest(signedTxHash)),
ethers.utils.joinSignature(owner2._signingKey().signDigest(signedTxHash)),
]);
aaTx.customData = {
...aaTx.customData,
customSignature: signature,
};
console.log(
`The multisig's nonce before the first tx is ${await provider.getTransactionCount(
multisigAddress
)}`
);
const sentTx = await provider.sendTransaction(utils.serialize(aaTx));
await sentTx.wait();
// Checking that the nonce for the account has increased
console.log(
`The multisig's nonce after the first tx is ${await provider.getTransactionCount(
multisigAddress
)}`
);
multisigBalance = await provider.getBalance(multisigAddress);
console.log(`Multisig account balance is now ${multisigBalance.toString()}`);
}
Заменить <FACTORY-ADDRESS> на адрес фактори контракта
Заменить <WALLET-PRIVATE-KEY> на приватный ключ от кошелька
Сохраняем и выходим из нано
Код:
yarn hardhat deploy-zksync --script deploy-multisig.ts
#вывод примерно такой:
https://img2.teletype.in/files/5c/37...cae04633f.jpeg
Напоминаю, что это третий контракт из серии, не забывайте выполнить первый и подписывайтесь - скоро будут еще!
|